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An r-adaptive moving mesh method is developed for the numerical solution of
an enthalpy formulation of two-dimensional heat conduction problems with a phase
change. The grid is obtained from a global mapping of the physical to the computa-
tional domain which is designed to cluster mesh points around the interface between
the two phases of the material. The enthalpy equation is discretised using a semi-
implicit Galerkin finite element method using linear basis functions. The moving
finite element method is applied to problems where the phase front is cusp shaped
and where the interface changes topology 2001 Academic Press
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1. INTRODUCTION

In this paper we consider the development of a simple moving mesh method to sc
two-dimensional phase change problems. These arise in a number of important physica
industrial contexts such as process engineering and geophysics. A convenient formule
for the numerical solution of these problems is obtained by writing the governing he
conduction equations in terms of the enthalpy, which is the sum of the sensible and la
heats. The main advantage of this approach is that no explicit tracking of the phase frol
needed and that this information can be deduced from the numerical solution a posteriol
number of fixed grid methods have been proposed including [10, 19, 23, 27]. However, |
well known that unphysical behaviour, such as spurious temperature plateaus and oscille
phase front movement, often occur using these methods [9, 25]. Alternatively, one
attempt to track the moving phase front by deforming the underlying mesh. Normally, tl
is done in such a way that element boundaries or mesh coordinate lines coincide with
phase front [17, 24]. Improved accuracy is afforded by these methods at an increased
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The main disadvantage of this approach however is the complication involved when
phase front changes topology.

A number of researchers have found it possible to improve the solution process us
adaptive mesh techniques. Within a finite element context this is usually achieved us
the h-method of adaptation, where the mesh is locally refined or coarsened by adc
or deleting points [21, 22]. A less popular approach is to use the so-galefihement
method where mesh points are moved throughout the domain while the connectivity
the mesh is kept fixed. The main reason for the lack of popularity of this approach is
difficulty involved in controlling the geometry of the mesh elements. If this is not dor
with care then mesh tangling and elements with negative areas can easily arise. How:
the development of a robustadaptive method is attractive in that it intuitively should be
able to accurately resolve and follow important solution features. The coding involved
anr -adaptive method is also simpler than that involved irhanethod, which requires a
considerably more complicated data structure.

The development af-adaptive methods has come from a number of different direction
The moving finite element method of Miller and coworkers [18a] uses equations describ
the mesh movement derived from the minimisation of the residual of the finite eleme
approximation over an enlarged test space. Early versions of the method required ca
prevent mesh tangling although recent formulations have led to a more robust method
Since the mesh equations are coupled to the equations for the physical PDE, the rest
nonlinear systems are often very large. The fact that the mesh is often of secondary im
tance suggests that a more efficient decoupled procedure would be of interest. Rece
Huang and Russell [15] and Cabal.[4] have developed moving mesh methods to solve
time-dependent problems with steep solution fronts. The meshes are obtained from a1
ping of a computational domain to the physical domain that minimises a functional relate
grid smoothness, orthogonality, and adaptivity. Similar minimisation techniques have b
used to generate adaptive grids for steady state problems [1, 2, 26]. For time-depen
problems the computational mesh is obtained from a gradient flow equation which is dri
by a regularised form of the Euler—Lagrange equation describing the functional minimt
The regularisation in time allows the mesh to smoothly track significant solution feature

The moving mesh method of Huang and Russell [15] has been used with a finite volu
approximation of the enthalpy equation by Lang [16]. A classical jump discontinuity
assumed in the temperature—enthalpy relationship and the mesh is moved towards
gradients in the enthalpy. Numerical experiments using this approach show that acct
predictions of the phase front can only be achieved using high-order upwind techniq
to solve the physical PDE on the moving mesh. Upwinding is required since signific:
convective terms are introduced to the governing equations when the mesh points are allc
to move. At the phase change interface these convective terms dominate as no dissip
is present in the classical formulation.

The main aim of this paper is to apply the moving mesh approach of Huang and Rus
[14] to the solution of a regularised enthalpy formulation of Stefan problems. The regul
isation removes the need for any sophisticated upwinding and instead we apply a stan
Galerkin finite element discretisation. The regularisation also allows Newton’s methoc
be used to efficiently solve the nonlinear algebraic systems that arise from the finite
ment discretisation at each time step. Rather than adapt the grid towards large gradier
the enthalpy, we instead consider a very simple adaptivity criterion based on the diste
from the numerical approximation of the phase front. This allows the mesh to be hig|
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clustered where the material is changing phase and allows for the accurate determine
of its position. A similar approach was used successfully as part of the one-dimensic
moving mesh method of Mackenzie and Robertson [18].

The layout of this paper is as follows: in the next section we present a regularised enths
formulation of the heat conduction equations. In Section 3 we discuss how the moving m
is generated along with specific adaptivity criteria for phase change problems. In Sectic
we describe a semi-implicit moving finite element discretisation of the enthalpy equatit
Finally, we apply the moving mesh method to four test cases in Section 5.

2. GOVERNING EQUATIONS

Let Q2 € R be a bounded polygonal domain ahd> 0. SetQ := Q x (0, T). Itis well

known that a substance of constant conductivity and unit density satisfies the heat equz

du 9% 9%

— =+ —+ f(X, ¥, 1), 2.1

ot 8x2+ay2Jr x.y.0) @D
whered is the temperaturey(9) is the enthalpy, and (X, y, t) represents any body heating
or cooling sources. If a pure substance with constant specific begatslc, undergoes a
change of phase at the temperatire 6, then the enthalpy may be written as

{ C1(0 — Oret), 0 < 6
u) = (2.2)

u@n) +A+c2(0 —6m), Om <0,

whereu(6;,) = lims_.o- u(ém + ), et is any reference temperature bel6y;, andx is
the latent heat.

For the reasons outlined in the Introduction, various attempts have been made to regul:
the discontinuity iru(0). We consider a continuously differentiable relationship suggeste
by Egolf and Manz [12] which takes the form

Uref +CL(0 — bm) + 3 exr(—%) 0 < Om
u@) = (2.3)
UBm) + 5 + C2(0 — Om) — gexp<—'9£fm>, 0 > O,

wheres~ ands™ determine the rates at which the temperature—enthalpy function asympto
to the linear relationship away from the phase change tempefitsee Fig. 1). Fou(9)
to be continuously differentiable &t we require that

Al 1
C]_—C2= E(;-g-) (24)

If ¢ = ¢~ 4+ ¢T then we can define a modified Stefan number

_ (G —Cye
—

St (2.5)
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FIG. 1. Regularised temperature—enthalpy function.

The simultaneous satisfaction of (2.4) and (2.5) gives rise to quadratic equatiensiod
¢T which have physically relevant solutions given by

&

e = - (1+St — V1t St (2.6)
25t
and
gt = 28L‘ﬁ(srk 1+ VI+S0). 2.7)

In the limitc, — ¢, we haves™ — ¢~ = ¢/2.

The original motivation for this model was to describe mixtures and glassy substan
that have a continuous enthalpy transition from a pure solid to a pure liquid phase. Howe
here we primarily use this model to regularise the temperature—enthalpy relationship
[20], Nochetto considered the effect of regularisation onlthesrror in the temperature
using a continuous piecewise linear function. If there are no mushy regions then the e
in the temperature i®(¢). Numerical experiments in one dimension [18] suggest that w
also introduce arD(¢) error due to the exponential-based regularisation. The main id
using an adaptive moving mesh is to use smaller valueghudn would be possible using
a fixed mesh so that the regularisation error is much smaller than the discretisation err

3. AMOVING MESH STRATEGY

To generate an adaptive mesh it is useful to regard the physical détyaia the image
of a computational (logical) domaia. under the invertible maps

x=x&,n), y=yE n and & =£(X,y), n=n(XYy), (3.1)

wherex = (x, y) and€¢ = (&, n) are the physical and computational coordinates, respe
tively. A mesh covering2,, is obtained by applying the mapping given in (3.1) to a parti
tioning of Q.
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A popular way to choose the coordinate transformation for steady problems is to reqt
that it minimises a functional of the form

FE n) = %/Q (VETGIvE 4+ V" GtV dx dy, (3.2)

whereV = (3/0x, 3/dy) andG(X, y) is a 2x 2 symmetric positive definite (SPD) matrix,
often referred to as a monitor matrix. The idea in adaptive mesh generation is to €h00s
to concentrate mesh points@y, where the PDE is difficult to solve. However, constructing
a suitable monitor matrix is not an easy task. Given-a2 SPD matrix it can be written in
terms of its eigendecomposition

G = MW1V] + A2VoVg, (3.3)

wherev; andv, are normalised eigenvectors with corresponding eigenvaluesd A,.
A study by Caoet al. [5] shows that if the mesl®; is uniformly distributed then the
adaptive mesh generated by minimisia¢g, n) is concentrated in regions wheteanda,
change rapidly. The analysis therefore allows a direct way of defining a monitor matrix
specifying a suitable normalised directiepand setting/, = vi-. Thereafter; is chosen
to have a suitable variation in the direction given\y This leaves the choice af and
generally the smaller the ratiq /A, the more the grid adapts in the directignand hence
two-dimensional effects become less pronounced.

A number of choices of monitor matrices are discussed in [5]. For example, one possibi

is to set
vu
Vi=——, Vo=V, A;=1/1+|VU?,
L= v 2 =Vj 1 | |

which adapts the mesh to large gradient changes in the funation The eigenvalue
A2 can be chosen as a function bf. For example, ifa; = A, thenG = ;1 and this
results in minimising Winslow’s functional [26]. If> = 1/A;, then G = M//det(M),
whereM = | 4+ (Vu)(Vu)" and we arrive at a method based on harmonic mappings [11
If 2, = 1thenG = (I + (Vu)(Vu)T)¥2, which is a generalisation of the well-known arc-
length monitor function used in equidistribution schemes in one dimension.

For Stefan problems the main numerical difficulty occurs at the phase change interf
which can be detected by a large local gradient in the enthalpy. The moving mesh schen
Lang [16] uses the arc-length monitor matrix based on gradients of the enthalpy. Howe
it is not uncommon to have regions of the domain that are far from the phase front wh
the gradient of the enthalpy is significant enough to affect the clustering of the grid. F
example, problems with a large Stefan number are characterised by the fact that the Iz
heat jump is small in relation to the temperature, and hence enthalpy, difference acros:
domain. Numerical experiments in Section 5.1 show that this can lead to unnecessary n
clustering away from the phase change interface.

In an attempt to focus the mesh adaption towards the phase front we instead consic
monitor matrix of Winslow-type with

M“1
G=(1+ l. 3.4
( \/M§|X_X*|2+1> ( )
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Herex, is the closest point t& on the numerical estimate of any phase front, ancnd

w2 are user-chosen parameters. The one-dimensional equivalent of this monitor matrix
been used successfully in the moving mesh method of Mackenzie and Robertson [18].
experience gained in one dimension shows that the parameteontrols the minimum
mesh spacing whereas controls the rate at which mesh clustering occurs.

The calculation ofx, is achieved as follows. At tim&" we have a piecewise linear
temperature fiel® (x, t") obtained from a finite element discretisation which is describe
in the next section. A piecewise linear representation of a phase interface is then obta
from the ordered list of pointf@xf}ihﬁ1 such that® (x¢) = 6. These points are obtained
from a plotting routine used to display the numerical results. This routine can also ea:
detect if more than one phase front is present. A smooth representation of an int8iitace
then obtained by an arc-length parameterised spline passing through thdxﬁ)ﬁjﬁsThis
curve is then partitioned by a set of poir{nxé}iNgl which is uniformly distributed along"
with x3 = x{ andxy,_ = x§, . Finally, we sek, = min< <y, [X} — X|. In all the calculations
performed in Section 5 we have 9¢4 = 100, 47 = 100, andu, = 40.

Once a monitor matrix is decided upon, the computational mesh is then found by solv
the Euler-Lagrange equations

V-(Glve)=0 and V- (G lvpy =0. (3.5)

In practice we solve fox(€) as this defines the physical mesh used with the finite eleme
discretisation. Therefore, by interchanging the roles of the dependent and indepen
variables we find that (3.5) takes the form

xT Gx xF Gx
O (X O%) 9 (X BXy -0 (3.6)
& Jg an Jg
and
xT Gx x¥ Gx
_O (NP} 9 [ XEX) g 3.7)
d& Jg an Jg

whereJ = Xgy, — Y:X, andg = det(G).
For time-dependent problems we follow the approach of Huang and Russell [14] wh
the coordinate mapping solves the gradient flow equations

%8 _ 1y e (3.8)
at T

Heretr > 0is atemporal relaxation parameter that determines the rate at which the comnr
tational mesh attempts to minimise the functioRalWriting the gradient flow equations
in terms of the mapping(£) results in the coupled set of parabolic equations

ax 1 92X aX

]

where

. —ad.clal. b =_ 1867 3.10
aj=d- -G, b=-) dral (3.10)
j
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and the contravariant base vectafs= V&', i = 1, 2. The temporal discretisation of (3.9)
is achieved using a semi-implicit approach where

XM= X"+ At (afyxft + alxt 4 agxpit + bIxpt o+ bpx) ). (3.11)
The spatial discretisation of (3.11) is performed using second-order central finite differen
on anN x N uniform partition ofQ2; = (0, 1) x (0, 1). The effect of evaluating the coeffi-
cientsg; j, andl; attimet" is to decouple the solution of the mesh from that of the physice
PDE. This has the advantage that different iterative techniques and different tolerances
be used for each system. In particular, the discretisation of the moving mesh equations {
results in a linear algebraic system which we solve using an ILU-preconditioned BICGs
routine with a tolerance of 16.

Dirichlet boundary conditions for the above system are obtained by solving a or
dimensional moving mesh PDE.IIf € 32 andT'. € 9Q2; denote the physical and compu-
tational boundary segments with arc-lendthsdl. respectively, then the mesh bris the
solution of

s 1/ 3s\ 29 ds

—=—(M— —(M— o,l 3.12

L) 2 (). e 612
with s(0) =0 ands(l.) =I. Here M is the one-dimensional projection of the two-

dimensional monitor function along the boundary.

4. AMOVING FINITE ELEMENT DISCRETISATION

We will assume that [0T] is partitioned by uniform time intervalat = T/Nt such that
0=t <t < ... < gNt=1 Nt _ T

Using the procedure described in the previous section we will assume that ate have
a triangular mesls"*+* that has the same connectivity as the mesh at the previous time s
S". Therefore, each elemelit(t"+1) of S"** corresponds to a unique eleméntt") of S".

We consider approximations of the form

Uy, ) = Ui (xt), yt), O, y.t) =Y ;0 (x(t), yb),
j i

whereg; (x(1), y(t)) is the usual piecewise linear basis function associated with the no
(Xj (1), yj(t)), andU; (t) = u(®; (t)) whereu(9) is given by (2.3). While spatial derivatives
of U and® retain their usual form the temporal derivatives must take account of the moti
of the mesh. For example,

0 ) j
U= o ; Uj (D) (x(D), y(1) = Zj:{Umﬁj +Uidi)

. Do; 9¢;. 099;.
= {U,-¢,- +U; (th = N 3—),'3/1)}’

j
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where D/Dt is the derivative along the path given lby; (1), y;(t)). Since¢; is constant
along this path we have

Ut =Y (Ui — UjX;(¢x — Uj Vi (8))y). (4.1)
j

The additional terms appearing in (4.1) can be viewed as a correction for the convec
effects of the mesh motion.

Let 7 denote the set of indices of the mesh points g@dhe subset of7 excluding
those corresponding to Dirichlet boundary conditions. The finite element solution satis!
the weak formulation

(Ut, i) — (Oxx + Oyy, ¢i) = (f, 1), Vi e,

where(-, -) denotes thd_, inner product ovef2. Using integration by parts and the fact
that¢; = 0 on9o2 we have

(Ut, ¢i) + (Ox, (@1)x) + By, (¢i)y) = (f,¢1) Vi € Jo. 4.2)
Substituting (4.1) into (4.2) we get
D Ui @0 = D Ui @i + Vi @yd) + D 05 (@)@ + 61y (d1)y)
J _ (f7 ¢i ) J J
This is a system of ODESs of the form
MU+ BU-K®O =T,

whereU, © are the unknown nodal values of the enthalpy and temperai(t¢js the mass
matrix, B(t) is a matrix associated with the movement of the méstt) is the stiffness
matrix, andf (t) is the load vector. The integrations involved in the inner products for th
matricesM, B, andK can all be calculated exactly. The load vedtas calculated using
one-point Gaussian quadrature.

Analogous to the approach followed by Mackenzie and Robertson [18]in one dimensi
we use a semi-implicit discretisation

MY _ AtK I EM = MU — AL(BMUM — £, (4.3)

Note that the terms introduced by the mesh motion are treated explicitly whereas the n
and stiffness matrix terms are treated implicitly. The main motivation behind this approz
is to try to obtain a set of nonlinear equations@lt'* that can be shown to possess a uniqu
solution. For the one-dimensional finite difference scheme considered by Mackenzie
Robertson [18], an existence and uniqueness result followed from the fact tHatthe

above was multiplied by a diagonal matrix and the one-dimensional equivalent of
stiffness matrix was easily shown to be an M-matrix. For the two-dimensional case we cc
diagonalize the mass matrix by mass lumping but the main difficulty comes in showing t
the stiffness matrixk "1 is an M-matrix. Restrictions on the mesh that guarantee th
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property include the well-known weakly acute condition that all the angles occurring
each triangular element are less thaf? (see Ciarlet and Raviart [18]). Unfortunately,
this condition is far too restrictive when the mesh elements are allowed to deform in
r-adaptive method. Therefore, at present we have no theoretical result to show that a un
solution of (4.3) exists. However, in practice we find that we have no difficulty in findin
solutions using the Newton iteration

U [n+1,9]
Mn+1(a®> . AtKn+1 (®[n+1,s+1] _ e[n+1,s]) — r[n+1,s]’ (4'4)

where
I.[n+1,s] — Mn+1(Un _ U[n+1,s]) + At(Kn+1®[n+1,s] — B"U" +fn+1).

The Newton iteration is well defined since the regularised temperature—enthalpy functio
continuously differentiable. The linear algebraic system (4.4) is solved iteratively using
ILU-preconditioned BICGstab routine to a tolerance of ¥0 The outer Newton iteration
is performed until the tolerance is also below 10

5. NUMERICAL RESULTS

5.1. Solidification in a Wedge

The first test case we consider is the solidification of a material in an infinite wedc
For numerical purposes we use the donie: (0, 1)° andT = 0.1. The initial condition
0(x,y,0) = 0.3 is prescribed throughout the domain. Thereafter, the Dirichlet conditic
6 = —1 is imposed orx = 0 andy = 0, and homogeneous Neumann conditions are im
posed on the remaining two edges. The latent heat for this example i8.25. This test
case has also been used in the numerical work of [10] and [13].

A semi-analytical solution of this problem was proposed by Budhia and Kreith [3]. The
solution is the linear superposition of solutions to two separate problems. The first i
heat conduction problem, without a phase change, where the medium is initially ab
the melting temperature and the temperature of the wedge boundaries is held at a
stant below the melting temperature tor 0. The second problem is that of a moving
heat source at the interface in a medium initially at the melting temperature. The m
ing source at the interface replaces the latent heat due to the phase change. The inte
position is given by the solution of a nonlinear integro-differential equation. To simplif
the solution process the authors assume that the interface is a one-parameter hype
and the free parameter is chosen so that the integro-differential equation is satisfie
one point on the interface. For this test case we have taken this point along the |
y = X.

Figure 2 shows the computed moving meshes wWitk= 30, Nt = 80, r = 0.1, and
¢ = 0.005. We can see clearly that the mesh is clustered around the phase change inte
and it follows its movement across the domain. Figure 2 also compares the compt
interface positions, which are denoted by dashed lines, with the interfaces computed u
a uniform fine grid withN = 180,Nt = 120, andt = 0.005. The accuracy of the interface
predictions is very good. Figures 3a and 3b show the computed temperature and entf
along the top boundary = 1 which show excellent agreement with the fine grid solution
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FIG. 2. Results for wedge solidification problem.
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FIG. 3. Results for wedge solidification problem.

Figure 3c shows that there is very good agreement between the computed front pos
and the semi-analytic solution of [3] which is highly accurate along theyirex. The
temperature history of the point (0.5, 0.5) is shown in Fig. 3d which is again predict
accurately compared to the fine grid solution.

Figure 4 compares the grids obtained using the monitor matrices mentioned in Sectio
The three approaches based on the gradient of the enthalpy all exhibit more grid cluste
within the solid phase than in the liquid phase. The reason for this is clear from Fig.
where we see that there is a significant gradient of the enthalpy in the solid phase. Howe
the variation is almost linear in the solid phase and there are no good approximation rea
for the grid being more clustered here. By contrast, the grid obtained using the mon
matrix (3.4) is symmetrically graded around the phase front.

5.2. An Oscillating Circle

The second test case we consider is the movement of an oscillating circular interfe
This problem was originally devised by Noche#tbal. [21] and has also been considered
as a test case for a level set method [7]. We have (0,5) x (—1,4) andT = 7/1.25.
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FIG. 4. Comparison of monitor functions for wedge solidification problem.

The forcing function is chosen such that the exact temperature is given by

{0.75(r2 — 1),
(X, y,t) = _ .
(L5—a)sing)(r — 1),

r <1,

5.1
P 6.1

where r = (X? 4+ (Y — a(t))®)Y?, «(t) = 0.5+ sin(1.25t), and sinp = (y — a(t))/r.

Dirichlet boundary conditions are imposed on the siges—1,y = 4, andx = 5, whereas

a homogeneous Neumann condition is prescribed 0. The latent heat for this example

isA = 1. The exactinterface, is a unit circle with centr€0, «(t)) that moves up and down.
Figure 5 shows the computed moving meshes and interface prediction®Nwti30,

Nt =80, r = 0.1, ande = 0.025. Again the numerically computed phase interface i

denoted by a dashed line. Clearly, the grid does a good job of following the movem
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FIG. 5. Grids and interface predictions for oscillating circle problem.

of the interface. The interpolation errors using an initial uniform and adapted mesh w
the same value oN are shown in Fig. 6, where the darker shaded areas correspond
larger errors. It is clear that the uniform mesh has significant errors around the positior
the initial interface and that these are reduced by a factor of three by adapting the in
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FIG.6. Interpolation errors for oscillating circle problem with= 30: (a) fixed and (b) adapted initial meshes

and (c) distribution of errors. (d) shows the front error over time.

mesh. The evolution of the front error is also shown in Fig. 6 where we can see that
improvement over the fixed mesh is maintained throughout the simulation. Table | compz
the performance of the moving mesh method with that of a fixed grid method. The notat

TABLE |
Errors for Moving and Fixed Grid Solutions of Oscillating Circle Problem

Moving mesh method

Fixed mesh method

Nt x N E Ep CPU Nt x N E = CPU

40 x 18 0.1040 0.0785 1.0 75 32 0.103 0.0814 2.2
60 x 25 0.0638 0.0404 2.9 100 43 0.0798 0.0545 5.9
80 x 30 0.0494 0.0312 5.8 150 65 0.0487 0.0390 26.4
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TABLE Il
Errors for h-adaptive and Fixed Grid Solutions of Oscillating Circle Problem
Using the Methods of Nochetteet al. [21]

h-adaptive method Fixed mesh method
Nt x J EX Ep Nt x J Er Ep
40 x 339 0.1070 0.0583 100 1812 0.1249 0.0814
60 x 592 0.0742 0.0501 150 4107 0.0778 0.0545
80 x 818 0.0517 0.0326 20R 7361 0.0631 0.0390

used in the table is

EX = ni%x|®? —0(xj,t")

, and E® = mr:';lx(dist(l (nAL), 1M).

The CPU times have been normalised such that the coarsest moving grid method
responds to one unit. To obtain the same level of accuracy it is clear that the mov
mesh method is considerably more efficient. Table Il shows the results obtained using
h-adaptive and fixed grid methods of Noche#ibal. [21]. Here J denotes the average
number of nodes used in the triangular meshes and these should be compansgd fwith
our moving mesh method. Although a strict comparison is difficult, in terms of equiv:
lent degrees of freedom it is clear that the moving mesh solutions in most cases are n
accurate than thh-adaptive solutions. As mentioned above, the moving mesh approa
does not require any complicated data structure and is considerably simpler to apply t
[21].

5.3. The Formation of a Cusp

For our third example, the initial condition is chosen such that the phase front fort
a cusp. The domai = (—2,4) x (0,5) and T = 1. The initial temperature is given
by

025r2—-1), r<1y>2 025x*-1), |x<1ly<2
60X, y,0) =< (r—=1), r>1y>2 5(x —1), x| >1y<1 (5.2)
(IX] = 1@ —2cost(y — 2)), X| >1,1<y<?2,

wherer = (x? + (y — 2)%)¥/2. ADirichlet conditiondp = 6p(1 + t) isimposed ox = —2,

x =4,y =5, and a homogeneous Neumann condition is prescribed-e). The exact
solution to this problem is unknown but calculations performed by [7] and [21] suggest tl
the phase front forms a cusp@& 0) and eventually the solid phase disappears.

Figure 7 shows the computed grids and interface locationsMith 30, Nt = 80,7 =
0.1, ande = 0.025 which show excellent agreement with a uniform grid simulation witt
N = 120 andNt = 160. Although the phase change interface forms a closed contour af
t = 0.65 we see that this does not pose any difficulty with the mesh movement. Thereat
the interface forms a cusp and again this potentially difficult interface shape is predic
well. After the solid phase disappears the grid automatically relaxes back towards a unift
mesh.
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5.4. An Oscillating Source

FIG. 7. Grids and interface predictions for cusp problem.

For our final example the domai2 = (-1, 1) and T = 12. The initial temperature
0(x,y, 0 =y/10, the boundary conditions ai(x, y,t) = y/10 for the three sides
y > —1, and a homogeneous Neumann condition is specified on the bottom sidel.
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FIG. 8. Grids and interface predictions for oscillating source problem.

The evolution of the solution is driven by an oscillating heat source

f (x, t) = cogt/5) max(©0, 3.125— 50|x — (—1/5, —1/2)|%)
+ sin(t/5) max(0, 3.125— 50)x — (—1/5, 1/2)|?).

(5.3)
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The exact solution of this problem is unknown although it has been used as a test cas
Nochettoet al.[22]. For this example we use the parametdrs- 40, Nt = 480,7 = 0.1,

& = 0.005, and the results are compared with a fine grid solution With 120,Nt = 960,
ande = 0.005. Figure 8 shows the development of two liquid phases that eventually mer
We note that at = 1.2 the moving mesh has no difficulty adapting towards the two pha:
change interfaces. Furthermore, the mesh movement algorithm effectively deals with
change in topology as the two interfaces merge. The computed interface positions are
similar to those predicted using the far more comgieadaptive method of [22].

6. CONCLUSIONS

In this paper we have presented a moving mesh finite element method for the enth
formulation of phase change problems. The algorithm is able to efficiently and accura
predict the evolution of the temperature field and the position of the phase front, e\
when it develops cusps or undergoes topological changes. The method is relatively sir
and delivers comparable accuracy to more complichtedlaptive schemes. Ideally, it
makes sense to combine the two approaches and this is an area for future developme
addition, we believe the method is well suited to be applied to more sophisticated moc
of solidification, such as phase-field models, which account for important physical effe
such as supercooling and surface tension.
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